121 research outputs found

    CAROM Air -- Vehicle Localization and Traffic Scene Reconstruction from Aerial Videos

    Full text link
    Road traffic scene reconstruction from videos has been desirable by road safety regulators, city planners, researchers, and autonomous driving technology developers. However, it is expensive and unnecessary to cover every mile of the road with cameras mounted on the road infrastructure. This paper presents a method that can process aerial videos to vehicle trajectory data so that a traffic scene can be automatically reconstructed and accurately re-simulated using computers. On average, the vehicle localization error is about 0.1 m to 0.3 m using a consumer-grade drone flying at 120 meters. This project also compiles a dataset of 50 reconstructed road traffic scenes from about 100 hours of aerial videos to enable various downstream traffic analysis applications and facilitate further road traffic related research. The dataset is available at https://github.com/duolu/CAROM.Comment: Accepted to IEEE ICRA 202

    NMR and Metabolomics—A Roadmap for the Future

    Get PDF
    Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatographymass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021—the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements

    An initial event in insect innate immune response: structural and biological studies of interactions between β-1,3-glucan and the N-terminal domain of β-1,3-glucan recognition protein

    Get PDF
    In response to invading microorganisms, insect β-1,3-glucan recognition protein (βGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the NMR solution structure of the N-terminal domain of βGRP (N-βGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-βGRP with laminarihexaose, a glucose hexamer containing β-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~ 6 kDa) containing β-1,3 and β-1,6 links that activates the proPO pathway, to N-βGRP results in the loss of NMR cross-peaks from the backbone 15N-1H groups of the protein, suggesting the formation of a large complex. Analytical ultra centrifugation (AUC) studies of formation of N-βGRP:laminarin complex show that ligand-binding induces sel-fassociation of the protein:carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~ 102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to sub-micromolar concentrations. The structural model thus derived from the present studies for N-βGRP:laminarin complex in solution differs from the one in which a single N-βGRP molecule has been proposed to bind to a triple helical form of laminarin on the basis of an X-ray crystallographic structure of N-βGRP:laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements carried out with the designed mutants of N-βGRP indicate that electrostatic interactions involving Asp45, Arg54, and Asp68 between the ligand-bound protein molecules contribute in part to the stability of N-βGRP:laminarin macro complex and that a decreased stability is accompanied by a reduced activation of the proPO pathway. Increased β-1,6 branching in laminarin also results in destabilization of the macro complex. These novel findings suggest that ligand-induced self-association of βGRP:β-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the initial signal of pathogen recognition for the activation of the proPO pathway

    PROSESS: a protein structure evaluation suite and server

    Get PDF
    PROSESS (PROtein Structure Evaluation Suite and Server) is a web server designed to evaluate and validate protein structures generated by X-ray crystallography, NMR spectroscopy or computational modeling. While many structure evaluation packages have been developed over the past 20 years, PROSESS is unique in its comprehensiveness, its capacity to evaluate X-ray, NMR and predicted structures as well as its ability to evaluate a variety of experimental NMR data. PROSESS integrates a variety of previously developed, well-known and thoroughly tested methods to evaluate both global and residue specific: (i) covalent and geometric quality; (ii) non-bonded/packing quality; (iii) torsion angle quality; (iv) chemical shift quality and (v) NOE quality. In particular, PROSESS uses VADAR for coordinate, packing, H-bond, secondary structure and geometric analysis, GeNMR for calculating folding, threading and solvent energetics, ShiftX for calculating chemical shift correlations, RCI for correlating structure mobility to chemical shift and PREDITOR for calculating torsion angle-chemical shifts agreement. PROSESS also incorporates several other programs including MolProbity to assess atomic clashes, Xplor-NIH to identify and quantify NOE restraint violations and NAMD to assess structure energetics. PROSESS produces detailed tables, explanations, structural images and graphs that summarize the results and compare them to values observed in high-quality or high-resolution protein structures. Using a simplified red–amber–green coloring scheme PROSESS also alerts users about both general and residue-specific structural problems. PROSESS is intended to serve as a tool that can be used by structure biologists as well as database curators to assess and validate newly determined protein structures. PROSESS is freely available at http://www.prosess.ca

    NMR and Metabolomics—A Roadmap for the Future

    Get PDF
    Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021—the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements

    Metabolomics of Oxidative Stress in Recent Studies of Endogenous and Exogenously Administered Intermediate Metabolites

    Get PDF
    Aerobic metabolism occurs in a background of oxygen radicals and reactive oxygen species (ROS) that originate from the incomplete reduction of molecular oxygen in electron transfer reactions. The essential role of aerobic metabolism, the generation and consumption of ATP and other high energy phosphates, sustains a balance of approximately 3000 essential human metabolites that serve not only as nutrients, but also as antioxidants, neurotransmitters, osmolytes, and participants in ligand-based and other cellular signaling. In hypoxia, ischemia, and oxidative stress, where pathological circumstances cause oxygen radicals to form at a rate greater than is possible for their consumption, changes in the composition of metabolite ensembles, or metabolomes, can be associated with physiological changes. Metabolomics and metabonomics are a scientific disciplines that focuse on quantifying dynamic metabolome responses, using multivariate analytical approaches derived from methods within genomics, a discipline that consolidated innovative analysis techniques for situations where the number of biomarkers (metabolites in our case) greatly exceeds the number of subjects. This review focuses on the behavior of cytosolic, mitochondrial, and redox metabolites in ameliorating or exacerbating oxidative stress. After reviewing work regarding a small number of metabolites—pyruvate, ethyl pyruvate, and fructose-1,6-bisphosphate—whose exogenous administration was found to ameliorate oxidative stress, a subsequent section reviews basic multivariate statistical methods common in metabolomics research, and their application in human and preclinical studies emphasizing oxidative stress. Particular attention is paid to new NMR spectroscopy methods in metabolomics and metabonomics. Because complex relationships connect oxidative stress to so many physiological processes, studies from different disciplines were reviewed. All, however, shared the common goal of ultimately developing “omics”-based, diagnostic tests to help influence therapies

    Transition Radiation Monitors at the Canadian Light Source

    Get PDF
    Diagnostic monitors are required to perform electron beam diagnostic tests at select points along the beam line of the Canadian Light Source (CLS) synchrotron. The decision has been made to equip the specified facility locations with Transition Radiation Monitors (TRM) for diagnostic purposes. TRM systems use Optical Transition Radiation (OTR), the physical phenomenon by which a charged particle crossing the boundary between two media emits electromagnetic radiation in the optical region of the spectrum. For the CLS TRM systems, the electrons traveling through a vacuum impinge upon aluminum surfaces that serve as the Transition Radiation (TR) foils. If the TR-emitting foils are made extremely thin, the infrequent encounters with material atoms causes only negligible acceleration of the charge, and the process is relatively non-destructive. The foils are mounted on a driving mechanism, which enable the beam operator to control the placement and removal of the individual foils in the beam line. The emitted radiation from each TR foil is focused by a pair of achromatic lenses, and is then imaged by a Charge Coupled Device (CCD) camera. The image captured by the camera is subsequently sent to a remote PC for image analysis of the beam cross-section profile and centroid. This report discusses the theoretical underpinnings of OTR, the prototype design of the TRM system and tests undergone by the prototype, as well as describing the possible changes to be made for the subsequent final design of the TRM system
    corecore